Обзор Kingston HyperX 3K 120 Гбайт, быстрого и стильного SSD-накопителя.

Обзор Kingston HyperX 3K 120 Гбайт быстрого и стильного SSD накопителя За границей цены на SSD-накопители стремительно идут вниз. Наша страна в этом плане никогда не была впереди планеты всей — стоимость твердотельных накопителей у нас по-прежнему высока. Чтобы отчасти компенсировать данный факт и сделать SSD доступными для массового потребления, производители идут на разные ухищрения.

Реклама, как известно, — двигатель торговли. На сайте компании Kingston очень много положительных эпитетов сказано в адрес Kingston HyperX 3K. Производитель уверяет, что геймеры и профессионалы получат массу преимуществ от использования данного накопителя: скорость передачи данных возрастет, время отклика приложений уменьшится. Есть одно «но». Что приходит в голову при прочтении названия? Что за индекс 3К? На сайте производителя этого не написано, вернее, там есть упоминание, но оно находится далеко не на главной странице. К слову, в линейке продуктов компании Kingston есть еще накопитель «HyperX SSD». Возможно, это более старый продукт. Какой из них лучше? Об этом мы расскажем чуть позже.

Внешний вид и комплектация

Сам накопитель Kingston HyperX 3K внешне выглядит красиво: стильное оформление, алюминиевые вставки. От более старшей модели, без индекса 3К, SSD отличается цветом. Обычный Kingston HyperX покрашен в синий цвет, 3К — в черный. По бокам накопителя расположены 4 отверстия для для крепления в корпусе или на рамку, идущую в комплекте.

Kingston HyperX 3K 120 Гбайт. Вид сверху
Kingston HyperX 3K 120 Гбайт. Вид сверху

Интерфейсы у Kingston HyperX 3K стандартные: разъемы SATA 6 Gb/s и питания и разъем для служебных переключателей.

Разъемы Kingston HyperX 3K 120 Гбайт
Разъемы Kingston HyperX 3K 120 Гбайт

Kingston HyperX 3K 120 Гбайт — тыльная сторона
Kingston HyperX 3K 120 Гбайт — тыльная сторона

Все самое интересное производитель разместил на лицевой стороне, сбоку ничего нет.

Kingston HyperX 3K 120 Гбайт. Вид сбоку
Kingston HyperX 3K 120 Гбайт. Вид сбоку

Оформление накопителя выполнено в серых тонах. Цвет пластика сочетается с цветом лицевой металлической вставки.

Kingston HyperX 3K 120 Гбайт. Вид с другого бока
Kingston HyperX 3K 120 Гбайт. Вид с другого бока

Упаковка выполнена в черных тонах. На лицевой стороне, в середине, нарисован сам накопитель Kingston HyperX 3K 120 Гбайт. Левее производитель указал, что это все-таки модель 3K. Также упомянуты скорости чтения/записи. Сзади — краткое описание устройства на многих языках мира, есть здесь и русский. Упаковка оформлена стильно и красиво.

Упаковка Kingston HyperX 3K 120 Гбайт
Упаковка Kingston HyperX 3K 120 Гбайт

Внутри находится сам накопитель, специальная рамка для установки накопителя в 3.5 дюймовый отсек системного блока. Так как сам накопитель имеет 2.5” габариты, он хорошо подойдёт для ноутбуков, в которых высота отсека HDD составляет 9 миллиметров — такова высота нашего накопителя. Увы, в Kingston HyperX 3K нет никаких рамок , которые можно снять и тем самым уменьшить его высоту на пару миллиметров, как это было в Intel SSD 520 Series. Что касается установки в обычный системный блок, то, если в корпусе нет посадочных мест под 2,5-дюймовые накопители, пригодится 3,5 дюймовая рамка из комплекта поставки. Винты для ее крепления идут в комплекте.

Комплект поставки Kingston HyperX 3K 120 Гбайт
Комплект поставки Kingston HyperX 3K 120 Гбайт

Из приятных мелочей можно отметить ручку-отвертку. Она выглядит оригинально и может быть использована при монтаже накопителя.

Отвертка в форме ручки
Отвертка в форме ручки

Кроме неё, производитель положил в коробку специальный пластиковый кейс с интерфейсом USB 2.0.

Кейс Kingston HyperX 3K 120 Гбайт
Кейс Kingston HyperX 3K 120 Гбайт

Кейс с открытой задней крышкой
Кейс с открытой задней крышкой

Такой кейс сможет предоставить только базовую защиту для SSD: ни к каким стандартам защиты вроде MIL-STD кейс не относится, так что сможетс защитить наш накопитель только от мелких бытовых неприятностей.

Замок кейса
Замок кейса

Кейс Kingston HyperX 3K 120 Гбайт. Вид сбоку
Кейс Kingston HyperX 3K 120 Гбайт. Вид сбоку

Второй минус кейса, как нетрудно догадаться, это интерфейс USB 2.0, который, вероятно, был выбран в погоне за низкой ценой. Жаль, производитель не стал использовать современный USB 3.0 — учитывая высокую пропускную способность нашего подопытного, вторая версия последовательной шины выглядит не совсем актуально.

Кейс Kingston HyperX 3K 120 Гбайт — разъем mini-USB 2.0
Кейс Kingston HyperX 3K 120 Гбайт — разъем mini-USB 2.0

Накопитель крепится в кейс очень плотно. Нет никакого намека на люфт. Кейс универсален. Вы можете использовать его с любым диском подходящего размера. Никакого внешнего питания не требуется. Вся необходимая мощность подается через один USB-кабель.

Технические характеристики

3К в названии накопителя означает, что он рассчитан на 3000 циклов записи/стирания. Много это или мало? «Обычный» HyperX SSD рассчитан на 5000 циклов. Почему производитель упомянул только циклы записи и стирания? Дело в том, что именно процесс записи информации наносит, пусть небольшой, но вред твердотельному накопителю, и рано или поздно он выйдет из строя.

Но не все так плохо, как может показаться. Контроллер SandForce SF-2281, используемый в SSD, следит за состоянием ячеек памяти и записывает/стирает информацию в ячейки памяти равномерно. Плюс на помощь приходят различные современные технологии, будь то сжатие данных, если это возможно, или предотвращение записи одной и той же информации повторно. Если перейти к цифрам, то при записи в среднем 10 Гбайт данных в день накопитель может прожить более 10 лет. Имеется в виду, что он выйдет из строя из-за старения, а не по причине возникшей неисправности. Компания Kingston дает 3-х летнюю гарантию на свои SSD накопители. В реальном случае срок службы может сильно варьироваться. В среднем это 3-5 лет — что уже не мало — но, возможно, накопитель прослужит и существенно дольше.

Kingston HyperX 3K 120

Kingston HyperX

Форм-фактор

2.5”

Контроллер

SandForce SF-2281

Тип памяти

MLC NAND

Максимальное количество циклов программирования/стирания

3000

5000

Интерфейс

SATA 6 Гбит/с и 3 Гбит/с

Емкость

120 Гбайт

Последовательное чтение (6Гбит/с)

555 Мбайт/с

Последовательная запись (6Гбит/с)

510 Мбайт/с

Средняя скорость чтения/записи случайных блоков по 4 КБ

20000 / 60000 IOPS

Максимальная скорость чтения/записи случайных блоков по 4 КБ

85000 / 73000 IOPS

87000 / 70000 IOPS

Энергопотребление

0,455 Вт при простое
1.58 Вт при чтении
2.11 Вт при записи

0,455 Вт при простое
1.6 Вт при чтении
2.0 Вт при записи

Размер

69,85 x 100 x 9,5 мм

Вес

97 г

Рабочая температура

от 0°C до 70°C

Температура хранения

от -40°C до 85°C

Ударостойкость

1500G

Вибрация при работе

2,17G

Вибрация при простое

20G

Средняя наработка на отказ

1 млн. часов

Как видно из таблицы, технические характеристики накопителей во много схожи. Немного отличаются показатели максимальной скорости при чтении/записи случайных блоков размером 4 КБ и энергопотребление. В качестве контроллера выступает микросхема SandForce SF-2281. Очень удачный вариант для накопителей своего класса. Память используется синхронная.

Kingston позиционирует свой продукт как решение для энтузиастов. То есть, в нашем понимании, бескомпромиссные решения, обеспечивающие очень высокий уровень производительности, надежности, или каких-то превосходящих характеристик/свойств относительно аналогов. Посмотрим, как он поведет себя на практике.

Тестирование

В тестировании использовались несколько утилит: Сrystal Disk Mark и AS SSD Benchmark. Ряд тестов проводились в двух режимах. В первом случае мы устанавливали операционную систему на Kingston HyperX 3K и проводили тестирование его как основного и единственного накопителя. Во втором случае SSD компании Kingston, использовался как хранилище: тестовый стенд загружался с SSD Intel 320, на котором, в свою очередь, была установлена ОС. А наш подопытный подключался вторым накопителем.

Для проверки скорости работы Kingston HyperX 3K 120 использовался стедующий тествый стенд:

  • Процессор — Intel Core i7 3770K. Тактовая частота 3,4 ГГц, кэш 6 Мбайт L3
  • Материнская плата — ASUS P8Z77-V Pro (LGA 1155)
  • Система охлаждения — Thermaltake Frio
  • Термоинтерфейс — Arctic Silver 5
  • Оперативная память — Corsair XMS3 1600 МГц, 9-9-9-24, 2x4 Гбайт (Dual channel)
  • Жесткий диск — Intel SSD 320 Series, 160 Гбайт; Kingston HyperX 3K 120
  • Блок питания — Seasonic Platinum 1000 W
  • Монитор — Dell U2711b, 2560 х 1440
  • Операционная система — Windows 7, x64

Начнём тестирование с AS SSD Benchmark.

Результаты тестов Kingston HyperX 3K 120 Гбайт в AS SSD Benchmark как диска с ОС
Результаты тестов Kingston HyperX 3K 120 Гбайт в AS SSD Benchmark как диска с ОС

Результаты тестов Kingston HyperX 3K 120 Гбайт в AS SSD Benchmark как обычного файлового ханилища
Результаты тестов Kingston HyperX 3K 120 Гбайт в AS SSD Benchmark как обычного файлового ханилища

Производитель заявил о скорости 555 Мбайт/с, 510 Мбайт/с для операций последовательного чтения и записи. В обоих случаях они оказались на хорошем уровне, хоть и не дотянули до указанных спецификаций. В тестовом приложении AS SSD Benchmark скорость последовательного чтения меньше заявленной — всего 446 Мбайт/с против 510 c на бумаге. Во время операции записи Kingston HyperX 3K 120 Гбайт показал производительность в 170,42 Мбайт/с. В режиме работы накопителя как обычного хранилища результаты получились немного повыше: 452 Мбайт/с для последовательного чтения и 173,8 Мбайт/с для записи. Результат хороший, но, разумеется, не идеальный.

Теперь проведём тестирование в другом бенчмарке, в Crystal Disk Mark.

Результаты тестов Kingston HyperX 3K 120 Гбайт в Crystal Disk Mark как диска с ОС
Результаты тестов Kingston HyperX 3K 120 Гбайт в Crystal Disk Mark как диска с ОС

Результаты тестов Kingston HyperX 3K 120 Гбайт в Crystal Disk Mark как обычного файлового хранилища
Результаты тестов Kingston HyperX 3K 120 Гбайт в Crystal Disk Mark как обычного файлового хранилища

Результаты тестирования в Crystal Disk Mark практически аналогичны предыдущим. Скорость последовательной записи и чтения для накопителя с установленной ОС составила 452 и 170,8 Мбайт/сек соответственно. В режиме файлохранилища скорость чтения стала немного больше, она увеличилась до 460,8 Мбайт в секунду, а вот скорость записи чуточку уменьшилась до 168,2 Мбайт/сек.

Crystal Disk Mark тестирование в режиме USB 2.0
Crystal Disk Mark тестирование в режиме USB 2.0

Ожидаемый результат. Как мы видим, серьезное падение производительности во всех теста, хотя для USB 2.0 скорости чтения и записи получились отличными. Если Вам нужно пару раз в месяц просто перенести данные или ненадолго подключить Kingston HyperX 3K к другому компьютеру, или ноутбуку, такой вариант вполне подойдет. Наличие такой возможности, безусловно, плюс.

Конкуренты и аналоги

SSD Sandisk Extreme 120 Гбайт

Sandisk Extreme построен на том же контроллере, что и Kingston HyperX 3K. Данный накопитель побывал у нас на тестировании и показал себя с хорошей стороны. Он не выделяется на фоне конкурентов чем-то особенным, но свою цену полностью отрабатывает.

SSD Sandisk Extreme 120 Гбайт
SSD Sandisk Extreme 120 Гбайт

Решение компании Sandisk дороже. Срок службы памяти производителем не заявлен. Как минимум он равен или, скорее всего, больше 3 тысяч циклов. У него нет в комплекте ни кейса, ни отвертки, ни крепежной пластины.

SSD OCZ Agility 3 120 Гбайт

Если Вам нужен бюджетный SSD, а покупать твердотельный накопитель совсем уж небольшой емкости не хочется, так же, как и жертвовать производительностью ради емкости, SSD OCZ Agility 3 объемом 120 Гбайт может быть очень удачным выбором. Здесь используется такой же контроллер SandForce SF-2281, интерфейс SATA 6.0 Gb/s.

SSD OCZ Agility 3 120 Гбайт
SSD OCZ Agility 3 120 Гбайт

Вот только память асинхронная. Со всеми сопутствующими недостатками. С увеличением занятого пространства на SSD-накопителе его производительность может уменьшаться, что иногда заметно. Но для желающих сэкономить SSD OCZ Agility 3 — отличный вариант.

Заключение

За все время, что Kingston HyperX 3K находился в тестовой лаборатории, он произвел приятное впечатление. Внешне накопитель выглядит оригинально и выделяется на фоне конкурентов. Цена на него адекватна, хоть и за границей он стоит еще дешевле. Каких-то неприятностей от Kingston HyperX 3K не было, программных сбоев не возникало.

Если вы хотите ускорить время загрузки операционной системы, а также используемых в работе приложений, то с учетом невысокой цены, переход на Kingston HyperX 3K может быть очень удачным решением. Несмотря на то, что количество циклов записи/стирания было значительно снижено (с 5000 до 3000), этого все еще более чем достаточно для домашнего/офисного использования, как то: игры, прослушивание музыки, интернет-серфинг.

Производительность находится на хорошем уровне, вот только уменьшенный срок службы может сыграть решающую роль при выборе. Конечно, если вы планируете использовать его не один десяток лет в высоконагруженной рабочей станции, сервере или файловом хранилище, то лучше воспользоваться специально разработанными для этого решениями. Они имеют ряд серьезных отличий от HyperX 3K 120 Гбайт, который для этих целей не предназначен. В ином случае рассматриваемый нами накопитель отлично подойдёт для домашнего ПК.

Источник Обзор Kingston HyperX 3K 120 Гбайт


RSS лента ВСЕГО блога с комментариями RSS лента ВСЕГО блога БЕЗ комментариев RSS лента этой КАТЕГОРИИ с комментариями RSS лента этой КАТЕГОРИИ и БЕЗ комментариев RSS лента ЭТОГО ПОСТА с комментариями к нему

Интерфейс SAS-2 и контроллер LSI SAS 9211-8i

Интерфейс SAS 2 и контроллер LSI SAS 9211 8i В начале 2010 года в продаже появились первые жесткие диски и контроллеры с поддержкой интерфейса Serial ATA Rev. 3.0 со скоростью передачи данных 6 Гбит/с. Несмотря на вдвое возросшую скорость интерфейса и некоторые улучшения в обработке очереди команд (NCQ), новинка пока что особых дивидендов в плане производительности не принесла: будучи примененным в традиционных жестких магнитных дисках, даже имеющих огромный буфер 64 МБ (например, Seagate Barracuda XT), интерфейс SATA 6 Гбит/с явно стреноживался во много раз меньшей скоростью линейного доступа к полезной для пользователя информации на магнитных пластинах (150—160 МБ/с против 400—500 МБ/с у интерфейса SATA Rev. 3.0). Между тем, практическая «обкатка» SATA Rev. 3.0 позволила индустрии достаточно оперативно вслед за ним выпустить его «старшего братца» — интерфейс Serial Attached SCSI 2.0 со скоростью передачи данных 6 Гбит/с. Ведь сигнальный (физический) уровень интерфейсов у них очень похож (у SAS лишь примерно вдвое выше напряжение сигналов, чем у SATA).

В этой статье мы кинем первый взгляд на интерфейс SAS-2 на примере одного контроллера и одного диска, а более детальным исследованиям его возможностей посвятим будущие статьи.

 

Serial attached SCSI 2.1: что новенького?

Будучи наследником старого доброго параллельного интерфейса SCSI, интерфейс Serial attached SCSI (SAS) изначально задумывался с прицелом на поэтапное удвоение пропускной способности. Первое поколение SAS со скоростью передачи данных 3 Гбит/с появилось в лабораториях еще в 2004 году и широко вышло на рынок в 2005—2006 годах. Спустя «пятилетку», то есть в 2009 году, на-гора был выдан SAS-2 (6 Гбит/с) — устройства с его поддержкой поступили в продажу уже в 2010 году. Наконец, в конце 2012 года индустрия ожидает первых инженерных воплощений SAS-3 со скоростью передачи уже 12 Гбит/с. На рынке устройства с поддержкой третьего поколения SAS следует ждать не ранее 2014 года (см. рис.). Таким образом, у новенького SAS-2 есть как минимум года четыре на окупаемость и «снятие сливок».


План эволюции интерфейса SAS (рисунок с сайта www.scsita.org)

Разрабатывает спецификации интерфейса SAS технический комитет T10 Международного комитета по ИТ-стандартам, или INCITS (International Committee for Information Technology Standards, см. www.incits.org). Практическая разработка и поддержка протокола SAS лежит на SCSI Trade Association (SCSITA или STA, см. www.scsita.org). Разумеется, поколения SAS обратно совместимы, то есть SAS 2.0 поддерживает все функции первого поколения SAS-1.1 со скоростью 3 Гбит/с (полный дуплекс, 10-метровый внешний кабель, расширитель портов до 255 устройств (всего до 65535), поддержку TCQ, совместимость с дисками SATA с NCQ, двухпортовые диски SAS, агрегацию четырех портов с соответствующим увеличением пропускной способности до 24 Гбит/с и мн. др.).

Второе поколение стандарта SAS — это эволюционное развитие предшественника. Стандарт SAS-2.0 вскоре после выхода был усовершенствован до версии 2.1 и нынешние рыночные устройства для SAS 6 Гбит/с поддерживают именно SAS-2.1. Основные нововведения можно свести к следующему:

  1. Удвоение пропускной способности шины с 3 до 6 Гбит/с (кабель до 10 м).
  2. Стандартизованное (по SAS-2) зонирование и зонирующий экспандер (см. рисунки ниже) для улучшенной поддержки мультихостинга и функций безопасности.
  3. Размывание спектра частот (spread spectrum) для уменьшения электромагнитной интерференции (не требуется для соединений на скорости 3 Гбит/с и менее).
  4. Мультиплексирование соединений (опционально) для увеличения степени использования интерфейса при подключении устройств с SAS-1 и др.
  5. Разъемы Mini-SAS (SFF-8088 и SFF-8087, см. рис.) для улучшения внешних соединений.


Стандартизованное зонирование по SAS-2



Самоконфигурирующийся зонирующий экспандер SAS-2



Разъем Mini-SAS 4X

Грубо говоря, наиболее важных нововведения в SAS-2, собственно, два — это удвоение скорости передачи и новые зонирующие функции. Именно последние дают возможность создавать такие новые и уникальные пока на рынке модели как, например, первый в индустрии 16-портовый SAS-коммутатор LSI SAS6160 (см. рис.), поступивший в продажу этой осенью по весьма привлекательной для его функциональности цене.


16-портовый SAS-2 коммутатор LSI SAS6160

С его помощью многочисленные серверы можно подключить к одной или нескольким независимым внешним системам хранения данных, используя при этом высочайшую пропускную способность «счетверенного» интерфейса SAS-2. Суммарная же пропускная способность такого коммутатора достигает фантастических 384 Гбит/с. Коммутатор LSI SAS6160 поддерживает до 1000 адресов устройств SAS и SATA в SAS-сетях с зонированием, позволяя пользователям иметь больше соединений и сократить время задержки при обращении к СХД различных классов. Кроме того, поддержка специальных активных кабелей позволяет коммутаторам LSI SAS быть расположенными на расстоянии до 25 м друг от друга, что в четыре раза больше по сравнению с использованием традиционных пассивных медных SAS-кабелей. Впрочем, подробное рассмотрение данного продукта выходит за рамки этой статьи, поэтому вернемся к ее основной теме.

За счет нововведений второе поколение SAS может еще больше потеснить решения на базе Fibre Channel в высокопроизводительных системах хранения данных и шину Infiniband при внешних соединениях модулей СХД. В частности, благодаря более низкой стоимости на один порт и в несколько раз меньшему энергопотреблению на порт (см. слайд).


Преимущества SAS-решений по сравнению с 10 GbE и Fibre Channel

С другой стороны, у SAS-2 улучшена поддержка SATA-накопителей высшей емкости в системах хранения данных (при помощи SATA Tunneling Protocol (STP)/SATA Bridging и Serial SCSI Protocol (SSP)/SATA Bridging, см. www.serialstoragewire.net/Articles/2008_03/opinion28.html), что усиливает универсальность нового интерфейса.

С точки зрения «неискушенного ИТ-потребителя» (которому, впрочем, необязательно связываться с SAS :)) польза от SAS-2, на первый взгляд, не так уж очевидна. Действительно, для обслуживания одиночных накопителей удвоение скорости интерфейса с 280 до 500 с лишним МБ/с по пользовательским данным пока что практически бесполезно — нынешние «магнитные» винчестеры (даже дорогие SAS-диски) едва дотягивают до 200 МБ/с в скорости линейного чтения/записи и им еще как минимум 2—3 года вполне будет хватать скоростей SAS 1.1, особенно если учесть наметившееся в последнее время замедление эволюции (роста плотности) перпендикулярной магнитной записи. Исключение — применение новейших профессиональных SSD со скоростью выше 300 МБ/с (хост SAS-2 поддерживает накопители с SATA 6 Гбит/с), а также активная работа дисков в крупных RAID-массивах, где большая емкость встроенных в диски кэшей вкупе с возросшей скоростью интерфейса способна немного поднять общую производительность. И тут полезно помнить, что узким местом может уже стать шина PCI Express, на которой «сидит» используемый контроллер RAID, — ведь даже PCIe x4 первого поколения в каждом направлении пропустит не более 1 ГБ в секунду (см., например, http://en.wikipedia.org/wiki/List_of_device_bandwidths#Computer_buses), что равно одновременной полной загрузке всего лишь двух линий SAS-2. Таким образом, шина PCI Express x8 фактически является минимально разумным требованием для 4-дисковых хост-контроллеров SAS-2. А для 8-дисковых RAID-хостов использование PCIe x8 поколения 2.0 является просто непременным.

Ну а больше пользы от применения SAS-2 можно получить, если активно использовать другие возможности SAS — в частности, расширители и агрегаторы портов. В этом случае, «посадив», скажем, на один порт SAS-2 пару быстрых SAS-винчестеров, мы можем практически не увидеть падения производительности. Аналогично — для внешних СХД при соединении с хостом по SAS-2 (кабелем длиной до 10 м)…

 

Контроллер LSI SAS 9211-8i

Первое знакомство с SAS-2 имеет смысл начать с недорогого (около 300 долл.) и достаточно простого, то есть HBA (Host Bus Adapter) 8-портового контроллера компании LSI Corporation ( www.lsi.com).


8-портовый HBA-контроллер LSI SAS 9211-8i с интерфейсом SAS 6 Гбит/с

LSI SAS 9211-8i не имеет собственной кэш-памяти (если не принимать во внимание не больно-то емкие регистры HBA-чипа) и основан на чипе LSI SAS2008 (ядро PowerPC 440 с частотой 533 МГц; производительность до 290 тыс. операций ввода/вывода в секунду).


Процессор 8-портового HBA-контроллера LSI SAS 9211-8i

Плата LSI SAS 9211-8i имеет низкий профиль (форм-фактор MD2), оснащена двумя внутренними разъемами Mini-SAS 4X (каждый из них позволяет подключать до четырех SAS-дисков), рассчитана на шину PCI Express x8 2.0 и поддерживает простейшие RAID-массивы уровней 0, 1, 1Е и 10, а также динамическую функциональность SAS, включая dual-port drive redundancy, может работать в общей сложности с 256 физическими дисками SAS и SATA (свыше восьми — через порт-мультипликаторы) и мн. др.



8-портовый HBA-контроллер LSI SAS 9211-8i с интерфейсом SAS 6 Гбит/с

Контроллер LSI SAS 9211-8i можно устанавливать как в корпуса ATX и Slim-ATX (для рабочих станций), так и в рэковые серверы формата 1U и 2U (серверы классов Mid- и High-End). Поддержка RAID производится аппаратно — встроенным процессором LSI SAS2008, что снижает общую нагрузку на ЦП рабочей станции или сервера.

Контроллер LSI SAS 9211-8i: основные технические характеристики
Параметр Значение
Системный интерфейс PCI Express x8 2.0 (5 Гбит/с), Bus Master DMA
Дисковый интерфейс SAS-2 6 Гбит/с (поддержка протоколов SSP, SMP, STP и SATA)
Число портов SAS 8 (2 разъема x4 Mini-SAS SFF8087)
Поддержка RAID уровни 0, 1, 1E и 10
Процессор LSI SAS2008 (PowerPC 440@533 МГц), до 290 тыс. IOps
Встроенная кэш-память отсутствует
Энергопотребление, не более 13,5 Вт (питание от +12 В шины PCIe)
Диапазон температур работы/хранения 0…+70 °С / −45…+105 °С
Форм-фактор, габариты MD2 low-profile, 168×64,4 мм
Значение MTBF >2 млн. ч
Гарантия производителя 3 года

В комплекте поставки в красочной коробке содержатся: плата контроллера, брекеты для ее установки в корпуса ATX, Slim-ATX и пр., два 4-дисковых кабеля с разъемами Mini-SAS на одном конце и обычным SAS (с питанием от Molex) — на другом (для подключения до восьми дисков к контроллеру), а также CD с PDF-документацией и драйверами для Windows, Linux (SuSE и RedHat), Solaris и VMware.

 

Тестирование

Для первого знакомства с HBA-контроллером нового интерфейса мы решили воспользоваться одиночными дисками SAS-2 и SATA Rev. 3, поддерживающими скорость передачи данных до 6 Гбит/с. Это позволит нам сосредоточиться на анализе интерфейса в чистом виде, оставив «заморочки» с RAID различных уровней на будущее. Первым диском с поддержкой SAS-2 в нашей лаборатории оказался накопитель Toshiba MBF2600RC компактного форм-фактора 2,5 дюйма, но при этом отнюдь не маленькой емкости — 600 ГБ.


Жесткий диск Toshiba MBF2600RC емкостью 600 ГБ с интерфейсом SAS-2

При скорости вращения пластин около 10000 об/мин и восьми головках (в тонком корпусе диска размещается аж четыре магнитных пластины) данный накопитель имеет весьма малое время случайного доступа (около 7 мс, что вдвое лучше, чем у типичных десктопных SATA-накопителей) и предназначен для малогабаритных высокопроизводительных хранилищ данных (в линейке Toshiba MBF2-RC присутствуют также модели на 450 и 300 ГБ). По сравнению с непосредственными предшественниками новинки отличаются не только вдвое большей вместимостью и скоростью интерфейса — в них также заметно улучшена экономичность благодаря применению специальной технологии. В частности, в моменты бездействия вращение пластин диска замедляется и энергопотребление падает на 28%. Заявленные 4,5 Вт в режиме ожидания сравнимы с энергопотреблением экономичных 3,5-дюймовых SATA-накопителей емкостью 1—2 ТБ со скоростью вращения пластин 5-6 тыс. об/мин. Хотя по нынешним временам кэш-память этого диска не очень велика — 16 МБ, — это не является недостатком, поскольку накопители данного класса предназначены преимущественно для задач последовательного чтения и записи информации, например, в системах хранения мультимедийного контента.

Жесткий диск Toshiba MBF2600RC: основные технические характеристики
Параметр Значение
Форматированная емкость 600 млрд. байт
Число пластин/головок 4/8
Скорость вращения пластин 10 025 об/мин
Среднее время поиска, чтение/запись 4 мс / 4,4 мс
Латентность вращения 2,99 мс
Интерфейс SAS 2.0, 6 Гбит/с
Стартовый ток, не более 1,5 А для +12 В и 1,0 А для +5 В
Потребление в бездействии, не более 4,5 Вт
Диапазон температур работы/хранения +5… +55 °С / -40… +70 °С
Емкость кэш-памяти 16 МБ
Акустический шум вращения 29 дБА
Ударостойкость, работа/хранение 100 g (1 мс) / 400 g (1 мс)
Габариты, масса 100×70×15 мм, 220 г

Максимальная скорость последовательного чтения/записи полезных данных для Toshiba MBF2600RC составляет около 150 МБ/с (см. график).


График скорости последовательного чтения диска Toshiba MBF2600RC

Безусловно, это гораздо меньше предельных возможностей интерфейса SAS даже первого поколений (3 Гбит/с; около 270 МБ/с по полезным данным), уже не говоря о SAS-2. Тем не менее, благодаря более быстрому случайному доступу и профессиональным алгоритмам кэширования в буфере SAS-диска мы можем надеяться на то, что выгода от подключения этого диска к более скоростному интерфейсу будет более заметна, чем в случае с ранее исследованной нами Seagate Barracuda XT ST32000641AS — первым диском для интерфейса SATA 6 Гбит/с. Впрочем, поскольку последний также поддерживается контроллерами SAS-2 (и LSI SAS 9211-8i в частности), его мы также включили в наше тестирование.

Диск Toshiba MBF2600RC мы испытывали при подключении к двум контроллерам: к LSI SAS 9211-8i по интерфейсу SAS-2 (6 Гбит/с) и к HighPoint RocketRAID 2642 по SAS 1.0 (3 Гбит/с). Дело в том, что в настройках BIOS Setup контроллера LSI SAS 9211-8i не предусмотрено пункта принудительного перевода портов SAS на скорость первого поколения интерфейса — 3 Гбит/с. Поэтому для сравнения двух скоростей SAS нам и пришлось привлечь другой HBA SAS-контроллер примерно той же ценовой категории (вышеназванный HPT RR2642 на популярном чипе Marvell 88SE6445 для шины PCI Express x4). Безусловно, это не является сравнением двух скоростей SAS в чистом виде (на одном и том же контроллере), что было бы полезно с чисто теоретической точки зрения, однако практический смысл имеет немалый, поскольку сопоставляет производительность диска SAS, подключенного к HBA-контроллерам сходного класса производительности старого и нового интерфейсов.

Кроме того, поскольку с HBA-контроллером LSI SAS 9211-8i на практике могут использоваться и SATA-накопители (как одно из целевых применений), мы протестировали его с «семитысячником» Seagate Barracuda XT ST32000641AS, также поддерживающим скорость интерфейса 6 Гбит/с. Для сопоставления Barracuda XT была также протестирована на скорости интерфейса 3 Гбит/с с двумя простыми RAID-контроллерами — вышеупомянутым 4-портовым SAS HighPoint RocketRAID 2642 и 6-портовым SATA, интегрированным в южный мост Intel ICH10R. Это также позволит нам сравнить производительность одного из самых быстрых нынче «семитысячников» на разных популярных контроллерах и скоростях интерфейса.

Тестовая система была основана на процессоре Intel Xeon 3110, материнской плате с чипсетом Intel P45 и 1 ГБ памяти DDR2-800. SAS-контроллеры устанавливались в слот PCI Express x16. Испытания проводились под управлением операционных систем Windows 7 x64 Ultimate и Windows XP SP3 Professional. В качестве тестов использовались программы AIDA64, ATTO Disk Benchmark 2.41, C’T H2BenchW 4.13, Futuremark PCMark05, Futuremark PCMark Vantage x64, Intel IOmeter 2006, Intel NAS Performance Toolkit 1.7 и др. Все тесты проводились пятикратно и результаты усреднялись. По сравнению с текущей методикой нашего сайта, предназначенной для тестирования десктопных SATA-накопителей, мы здесь добавили определенный круг задач, чтобы лучше выявить разницу между контроллерами и интерфейсами и более разносторонне представить производительность накопителей и контроллеров в приложениях — как профессиональных, так и пользовательских.

 

Результаты тестирования

Сперва взглянем на «физику» дисков. Оба имеют максимальную скорость чтения/записи полезных данных на пластины около 150 МБ/с, о чем наглядно говорят результаты теста ATTO Disk Benchmark на предельную скорость чтения и записи крупных (256 МБ) файлов большими блоками.

Немного разные результаты этого теста для разных контроллеров объясняются различиями в обработке и кэшировании потоковых данных. Отметим слабость SAS-контроллера HPT RR2642 при работе с SATA-диском (ниже мы убедимся в этом еще неоднократно), хотя с SAS-диском претензий к нему практически нет. Контроллер LSI SAS 9211-8i демонстрирует здесь почти эталонную работу (несколько уступив лишь интеловскому «южнику» с SATA-диском) — возможно, дело как раз в более высокой скорости интерфейса 6 Гбит/с. График скорости последовательного чтения для Toshiba MBF2600RC мы приводили чуть выше, а результаты для Seagate ST32000641AS можно найти здесь.

По среднему времени случайного доступа к информации на дисках закономерно более чем вдвое выигрывает SAS-десятитысячник Toshiba. Причем здесь на контроллере LSI результаты оказываются несколько хуже, чем на хосте HighPoint — возможно, «набегает» латентность от более активного кэширования данных, которое положительно сказалось на результатах потокового чтения/записи (см. выше).

Интересно, что несмотря на вчетверо меньший объем дисковой кэш-памяти у Toshiba MBF2600RC (16 против 64 МБ у Seagate ST32000641AS), эффективность работы алгоритмов отложенной записи при случайных обращениях (определяемое нами по отношению результатов этого теста при чтении и записи) у профессионального SAS-диска существенно выше, чем у десктопного SATA-накопителя — сказывается специфика оптимизации его firmware. Аналогичные результаты получены нами в программах IOmeter и AIDA64.

Теперь о «вкусном» — о скорости самого интерфейса, коль уж мы сравниваем диски и контроллеры при работе по SAS/SATA 3 и 6 Гбит/с. Этот параметр мы измеряли в нескольких программах и здесь демонстрируем результаты для трех из них — AIDA64, HD Tach 3 RW и H2BenchW 4.13.

Как видим, разные утилиты дают порой существенно различающиеся предельные значения скорости интерфейса при чтении. Тем не менее, с уверенностью можно сказать, что 6 Гбит/с работают — и работают при этом не так уж плохо, хотя наблюдаемых в некоторых лабораториях значений в 500 и выше МБ/с мы пока и не получили. Впрочем, и текущих 340-480 МБ/с более чем достаточно для нужд одиночных дисков (как, впрочем, и 250 МБ/с у интерфейсов с 3 Гбит/с). Снова отметим некоторую «заторможенность» HPT RR2642 при работе с SATA-диском, хотя по SAS к нему претензий нет.

Теперь перейдем к тестам производительности дисков в различных пользовательских задачах, которые эмулируются при помощи бенчмарков Intel NASPT, PCMark Vantage и PCMark05, а также тестом приложений из пакета C’T H2BenchW 4.13. Чтобы не перегружать верстку статьи многочисленными диаграммами, мы здесь приведем лишь усредненные показатели для этих четырех комплексных бенчмарков, а результаты по отдельным паттернам каждого из бенчмарков, также представляющие определенный интерес для анализа, сведем в таблицу.

В популярном PCMark Vantage, ориентированном на типичные применения персонального компьютера, несколько выгоднее смотрится SATA-диск Seagate (у него более эффективна работа с данными, распложенными на пластинах близко друг от друга). Выгоды от использования  интерфейсов на скорости 6 Гбит/с здесь практически нет — скорее даже небольшой проигрыш, который, впрочем, легко объяснить более прозаическими причинами: особенностями работы того или иного контроллера (в данном случае HighPoint RR2642 всем дает фору). Если взглянуть на таблицу по паттернам, то видно, что с SAS-диском оба контроллера идут ноздря в ноздрю, а с SATA-винчестером контроллер LSI вырывается вперед в задаче Media Center, но немного отстает в Photo Gallery, Vista Startup, Movie Maker и Media Player.

Чуть иная картинка в стареньком PCMark05: тут LSI на диске SAS вырывается вперед, хотя на поверку «виноват» в этом лишь один паттерн (Virus Scan, который активно использует кэширование, что отлично видно из результата, явно превышающего скорость физического доступа к пластинам как для SAS, так и для SATA-дисков). То есть мы находим подтверждение более активного использования кэширования контроллером LSI SAS 9211-8i. С другой стороны, это несколько снижает его показатели в других тестовых паттернах PCMark05 по сравнению с контроллерами HPT RR2642 и Intel ICH10R.

Особо отметим высокий показатель «южника» Intel в этом тесте (хотя шина DMI, по которой он общается с системой, и не превосходит по скорости PCI Express x4/x8 у обоих SAS-контроллеров) — для персональных применений дисков «южник», видимо, оптимален.

Еще один «трековый» тест дисков — C’T H2BenchW 4.13 — использует достаточно старенькую базу приложений, хотя и оригинальных (см. табл.). Здесь на удивление SAS-диск оказался ниже всякой критики — спишем это на особенности бенчмарка, который, по-видимому, очень критичен к разнице в объеме буфера диска 16 и 64 МБ. Нас в данном случает интересует лишь то, что интерфейсы со скоростью 6 Гбит/с снова не дают дискам никакого заметного выигрыша в производительности, а разница показателей объясняется различиями алгоритмов работы самих контроллеров (снова отметим прыть ICH10R и отставание LSI при работе с SATA).

В более свежем тесте Intel NAS Performance Toolkit, который использует несколько иную, более реалистичную, философию бенчмаркинга, нежели «трековые» PCMark и H2BenchW, а именно: непосредственную работу с файловой системой тестируемого диска, а не воспроизведение заранее записанных (в другой системе) команд обращения к диску внутри предварительно созданного временного файла, — ситуация еще более любопытная.

Здесь контроллер LSI (и его 6-гигабитный интерфейс) явно не в фаворитах. И если с SAS отставание в среднем в 5—6% еще не фатально (особенно страдают паттерны с записью на диск — HD Video Record, Content Creation и File/Dir Copy to NAS), то для SATA проигрыш просто фатальный, что можно списать только на недоработки firmware этого контроллера. Зато радуют показатели HPT RR2642, причем не только для SAS, но и для SATA-диска.

Напоследок для особо пытливых в качестве бонуса (и вне общего зачета) приведем результаты старенького теста приложений WinBench 99 Disk WinMark. Интересен он прежде всего тем, что многие его паттерны в большой степени зависят от кэширования буфером самого диска.

И здесь SATA-накопитель с буфером 64 МБ демонстрирует заметное преимущество, а контроллер LSI, невзирая на вдвое более высокую скорость работы интерфейса, смотрится явным аутсайдером. В лидеры же выходит HPT RR2642 с его «более прозрачными» по отношению к диску алгоритмами работы.

Чтобы подытожить эту часть обзора, приведем усредненный показатель производительности дисков/контроллеров в приложениях (среднее геометрическое по тестам H2BenchW, PCMark05, PCMark Vantage x64 и NAS Performance Toolkit).

Как видим, непосредственной (потребительской) выгоды от применения более скоростного интерфейса 6 Гбит/с с современными одиночными магнитными винчестерами SAS и SATA нет, а разница между контроллерами объясняется скорее алгоритмами их функционирования (архитектурой, прошивкой и драйверами).

 

Тесты в Intel IOmeter

Отдельную часть нашего обзора посвятим тестам в пакете IOmeter, поскольку они помогут понять некоторые тонкости работы исследуемых интерфейсов, дисков и контроллеров. Для этого мы воспользуемся стандартными серверными паттернами DataBase, File Server и Web Server (более показательными в случае SAS-дисков), а также паттернами на чтение и запись крупных (0,5 МБ) и мелких файлов с очередью команд 1, 4, 16 и 64. Для начала (и в качестве альтернативы предыдущей диаграмме) приведем усредненное значение производительности дисков/контроллеров в этих семи паттернах (геометрически по всем очередям команд всех паттернов с весом 1).

Справедливость, наконец, торжествует — серверный диск Toshiba MBF2600RC более чем вдвое опережает настольный Seagate ST32000641AS с той же линейной скоростью чтения/записи. Более того, налицо положительная разница от применения контроллера LSI SAS 9211-8i с 6-гигабитным интерфейсом. Посмотрим, из чего же складывается этот успех?

В паттерне базы данных с обращениями блоками по 8 КБ для SAS-диска на обоих контроллерах наблюдается полное равенство при очередях команд 1, 4 и 16 с почти линейной зависимостью производительности от глубины очереди. И лишь при очереди 64 контроллер LSI продолжает линейный рост, тогда как для HPT RR2642 виден выход на насыщение — чип Marvell уже не справляется с обработкой такого потока запросов. Более того, для SATA-случая контроллер HPT при неединичной глубине очереди команд вообще демонстрирует заметно более низкую производительность, чем чипы LSI и Intel (последние два здесь примерно равноценны). Это похоже на ситуацию, когда RR2642 не использует NCQ при работе с SATA-диском.


В паттернах File Server и Web Server эта тенденция сохраняется: с SAS-диском контроллер HPT «затыкается» на очередях выше 16, тогда как мощный процессор LSI, как тот заяц, продолжает «работать и работать». В этих серверных паттернах более чем двухкратное преимущество диска Toshiba MBF2600RC над Seagate ST32000641AS по скорости случайного доступа напрямую выливается в 2—3-кратный выигрыш в серверной производительности. Даже несмотря на то, что накопители класса Toshiba MBF2600RC предназначены преимущественно для задач последовательного чтения и записи информации в соответствующих серверах и системах хранения данных (это все же не ультрарезвые 3,5-дюймовые 15-тысячники).

Еще более любопытная картинка — в паттернах чтения и записи крупных (полумегабайтных) файлов (или блоков) случайным образом в пределах всего объема диска.


Если при единичной глубине очереди команд диски Toshiba MBF2600RC и Seagate ST32000641AS не сильно различаются по быстродействию, то уже при глубине очереди, равной четырем, производительность SAS-модели возрастает почти вдвое, тогда как у SATA — остается на прежнем уровне. При дальнейшем увеличении глубины очереди SAS-система сохраняет достигнутый при QD=4 уровень производительности (причем, одинаково эффективно для обоих протестированных нами SAS-контроллеров), тогда как SATA-система начинает заметно тормозить! Впрочем, тут есть одно исключение — если с SATA-диском используется контроллер HPT RR2642, то скорость системы не падает с ростом глубины очереди — это своеобразная реабилитация чипа Marvell после проигрыша в серверных паттернах.


А вот при случайном чтении и записи мелких файлов в пределах всего объема диска мы видим смешанную картину. С одной стороны, при чтении она отчасти напоминает ситуацию в серверных паттернах — насыщение контроллера HPT при QD=64, его индифферентность к глубине очереди с SATA-диском (здесь хост-контроллер Intel даже обходит мощный процессор LSI). А с другой — при записи за счет эффективного кэширования производительность на мелких файлах в 1,5—2 раза опережает таковую при случайном чтении таких же файлов и динамика от глубины очереди сходна с таковой при работе этих систем c крупными файлами. За исключением того, что производительность всех трех контроллеров с SATA-диском практически не меняется от глубины очереди команд (и почти втрое ниже таковой у SAS-диска).

Отдельно отметим, что все эти паттерны практически не выявили никаких преимуществ между системами от применения более скоростного интерфейса 6 Гбит/с — разница либо отсутствует вовсе, либо объясняется собственно архитектурой и алгоритмами работы использованных хост-контроллеров.

 

Ценовая информация

8-портовый SAS-контроллер LSI SAS 9211-8i с полным комплектом предлагается по цене в районе 300 долларов, что можно считать весьма привлекательным. Четырехпортовый аналог — LSI SAS 9211-4i — стоит еще дешевле. Более точная текущая средняя розничная цена устройства в Москве, актуальная на момент чтения вами данной статьи:

LSI SAS 9211-8i LSI SAS 9211-4i
$334( 24) $255( 23)

Заключение

Итак, новый интерфейс SAS 2.1 со скоростью передачи данных 6 Гбит/с и новыми зонирующими функциями в этом году начал уверенно завоевывать рынок. Все новые модели SAS-дисков этого года поддерживают именно эту версию интерфейса, хотя прекрасно работают и с контроллерами SAS-1. В продажу начали поступать и контроллеры для SAS-2. И один из первых таких девайсов в лице недорогого 8-портового Host-Bus-адаптера LSI SAS 9211-8i оказался весьма неплохим продуктом, способным работать на скорости 6 Гбит/с как с SAS-, так и SATA-дисками. Некоторые недостатки нового процессора LSI SAS2008 (особенно при работе с SATA) в задачах потребительского класса с лихвой компенсируются его высокой производительностью на серверных нагрузках при большой глубине команд.

Вместе с тем, можно констатировать, что для одиночных жестких дисков даже SAS-класса применение скорости 6 Гбит/с пока что явно избыточно и не приносит никаких дивидендов по сравнению с 3 Гбит/с. Впрочем, использованный здесь нами SAS-десятитысячник Toshiba MBF2600RC — это не самый топовый диск, и применение более резвых 3,5-дюймовых SAS-накопителей со скоростью вращения шпинделя 15 тыс. об/мин, скоростью чтения/записи пластин свыше 200 МБ/с и буфером 64 МБ, возможно, поможет выявить хоть какое-то положительное влияние удвоение полосы пропускания интерфейса. И, безусловно, преимущества от новой скорости интерфейса следует искать в многодисковых конфигурациях. А новые функции зонирования в SAS-2 позволят сделать многодисковые SAS-системы еще более удобными и гибкими в использовании.

Источник AS-2 и контроллер LSI SAS 9211-8i


RSS лента ВСЕГО блога с комментариями RSS лента ВСЕГО блога БЕЗ комментариев RSS лента этой КАТЕГОРИИ с комментариями RSS лента этой КАТЕГОРИИ и БЕЗ комментариев RSS лента ЭТОГО ПОСТА с комментариями к нему

LSI MegaRAID SAS 9260-8i — тестируем RAID-контроллер с поддержкой SAS 2.0

LSI MegaRAID SAS 9260 8i тестируем RAID контроллер с поддержкой SAS 2 0 RAID-контроллер для большинства пользователей является чем-то совершенно запредельным и непонятным. В то же время это самый обычный инструмент для создания надежной и производительной дисковой подсистемы, обслуживающей какой-нибудь популярный сервер или базу данных. Нагрузки, с которыми приходится сталкиваться этим решениям, радикальным образом отличаются от тех, с которыми имеет дело даже самый продвинутый энтузиаст — как по интенсивности, так и по самому характеру взаимодействия.

Все возрастающие потребности бизнеса требуют как можно больше места на дисках серверов, и желательно, чтобы и производительность была высокой, и стоимость оставалась в рамках приемлемого, и защищенность от сбоев присутствовала. Все это можно реализовать только при помощи RAID-массивов. В зависимости от задачи, выбирается тип накопителей и массива. Именно широчайшие возможности по кастомизации сделали RAID столь популярным.

Чем быстрее диски, тем более совершенный контроллер нужен, чтобы раскрыть их потенциал. Помимо аппаратной части, огромную роль играет прошивка. Именно она определяет «поведение» контроллера в зависимости от выбранного массива, используемых накопителей и характера нагрузки. Возможности контроллера и его прошивки особенно сильно влияют на работу массивов с распределенной четностью (RAID5 и производные).

Системы хранения данных, не ориентированные на высокую производительность, часто используют интерфейс SATA. Однако в целом для серверных решений больше характерно использование специальных интерфейсов. Наибольшее распространение на данный момент получили SAS, iSCSI и FibreChannel. SAS сейчас развивается быстрее всего, и многие аналитики прочат ему доминирование на серверном рынке. Пока главным препятствием к этому является относительно малая длина, на которую передается сигнал. Выбор интерфейса и соответствующей инфраструктуры определяется поставленной задачей, поэтому пока все три интерфейса относительно мирно сосуществуют.

Упаковка оформлена с любовью и вниманием к деталям
Упаковка оформлена с любовью и вниманием к деталям

LSI Corporation сделала ставку именно на интерфейс SAS. Эта компания принимает участие в разработке новых версий этого стандарта и является участником SCSI Trade Association, которая занимается продвижением SAS. В результате LSI удалось стать одним из лидеров на рынке RAID-контроллеров. В последнее время компания начала также развивать другие направления, но контроллеры всё еще являются приоритетным направлением.

LSI MegaRAID SAS 9260-8i

Кабели нужно докупать отдельно, слишком уж много там вариантов
Кабели нужно докупать отдельно, слишком уж много там вариантов

Для начала разберемся с названием контроллера. В нашем случае «92» в начале обозначает принадлежность контроллера к последнему поколению, а «60» — относит его к серии Value. Более «навороченная» серия Feature несет на борту цифры «80», ну а «40» достались самым простым контроллерам начального уровня, не способным к организации массивов с распределенной четностью. Осталось раскрыть «8i» — эта часть обозначения говорит нам, что контроллер имеет 8 портов, причем все они во внутреннем исполнении. Правда, на плате вы увидите лишь два разъема — каждый из портов SFF-8087 скрывает в себе по 4 порта, и соответствующие интерфейсные кабели больше всего напоминают плетки-четыреххвостки. Сделано это, конечно же, ради экономии пространства — наш контроллер низкопрофильный, формата MD2, и влезет даже в скромные по толщине серверы 2U (планок в комплекте сразу две — обычная и короткая, так что проблем с этим вопросом не будет), а значит, монтаж на его плате весьма плотный, и тут уже не до размещения портов по одному.

Слева CPU, справа модуль оперативной памяти
Слева CPU, справа модуль оперативной памяти

Кстати, по большому счету две старшие серии различаются лишь портами, по своей «начинке» они одинаковы — во всех контроллерах под пассивным алюминиевым радиатором бьется сердце в виде нового процессора LSI SAS 2108 с частотой 800 МГц. В распоряжении у него находится 512 МБ памяти DDR2 800 МГц. Еще одним радикальным отличием новой серии от предшественников стал переход на PCI-Express 2.0. Казалось бы, мелочь, но на практике удвоение пропускной способности должно во многих случаях помочь контроллеру раскрыть свой потенциал.

Такую концентрацию элементов на плате встретишь не каждый день
Такую концентрацию элементов на плате встретишь не каждый день

Как и полагается у серьезных контроллеров, модели новых серий поддерживают установку батареи питания кэша. Причем все контроллеры используют одну и ту же модель — iBBU07, до этого использовавшуюся лишь на LSI 8880EM2. В принципе, эта батарея является опциональной, но расчетливые администраторы предпочитают не рисковать и пользуются кэшированием данных в контроллере лишь тогда, когда эта батарея установлена — еще раз напомним, что в случае подобных устройств малейший сбой оборачивается просто огромными в финансовом плане потерями для компании.

Вместе с выпуском новых контроллеров LSI подготовила новую прошивку, позволяющую распознавать твердотельные диски и применять для работы с ними специальные алгоритмы. Позже для этих контроллеров были выпущены программы FastPath и CacheCade. Первая позволяет дополнительно повысить I/O производительность контроллера при использовании твердотельных дисков, а с помощью CacheCade можно использовать SSD в качестве кэш-памяти для массива из жестких дисков.

LSI, как и каждая другая крупная компания, производящая RAID-контроллеры, регулярно выпускает обновления прошивок, добавляя туда новые функции, подчищая небольшие баги и улучшая совместимость, так что всегда есть смысл заглянуть на страничку контроллера за самой новой и актуальной версией.

Тестирование

Да, к одному этому контроллеру подключается сразу 8 жестких дисков
Да, к одному этому контроллеру подключается сразу 8 жестких дисков

Контроллер тестировался в IOMeter с массивами RAID0, RAID10, RAID5 и RAID6 при количестве дисков от 2 до 8 (мы использовали Seagate Cheetah 15K.7 ST3300657SS). Варианты нагрузки: последовательные и случайные операции чтения и записи при работе с блоками разного размера, а также работа в типичных сценариях. В качестве последних взяты широко распространенные сценарии базы данных, файл-сервера, веб-сервера и рабочей станции. Глубина очереди для всех тестов была равна единице, что серьезным образом ограничивало возможности контроллера. Выбор такого режима обусловлен банальным интересом — как поведет себя контроллер при столь необычной для него нагрузке? К тому же получившиеся результаты будут неплохо иллюстрировать потенциальные возможности нашей дисковой подсистемы при стандартной «десктопной» нагрузке (если допустить, что кто-то решит организовать у себя дома такую систему).

Заранее оговариваем, что все графики у нас состоят из двух диаграмм — на одной результаты для массивов RAID0 и RAID10, на второй — RAID5 и RAID6. Такое разбиение и логично (одна группа с контрольными суммами, а другая без оных), и удобно — два десятка линий на одном графике читать было бы крайне сложно.

Понеслась! Начнем с последовательного чтения.

Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательное чтение, RAID5, RAID6
Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательное чтение, RAID5, RAID6

Всё равно получается немного запутанно, но основные тенденции выделить можно. Во-первых, обратите внимание, что массивам RAID5 и RAID6 удается выйти на максимальную скорость только при количестве дисков не более 5 и 6 соответственно — остальные продолжают идти плотной группой. Лидирует, что логично, массив RAID5 из 8 дисков. Получается, что при минимальной глубине очереди контроллер не успевает выжать максимум из наиболее сложных массивов даже при блоках в 1 МБ. Впрочем, в этом нет ничего удивительного.

Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательное чтение, RAID0, RAID10
Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательное чтение, RAID0, RAID10

На малых блоках результаты этих массивов близки к тем, что мы видели на прошлом графике. Зато дальше RAID0 и RAID10 доходят до максимума вне зависимости от количества используемых дисков. И тут становится видно, что максимум этот не так и велик — всего порядка 700 МБ/с. Это далеко от теоретической суммарной производительности использованных дисков. Собственно говоря, начиная с четырёхдискового RAID0, производительность перестает расти. Видимо, контроллеру попросту не хватает запросов, чтобы «раскидать» их по большему количеству жестких дисков.

Отметим также некоторую нестабильность в результатах массивов RAID10 при работе с малыми блоками. Скорее всего, она обусловлена тем, что диск пытается считывать при работе информацию с обоих зеркальных массивов RAID0 для достижения наибольшей скорости.

Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательная запись, RAID6, RAID6
Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательная запись, RAID6, RAID6

Картина усугубляется: теперь на полную скорость смог выйти только массив RAID5 из трёх дисков. Интересно, что наиболее «крупные» массивы показали в итоге наименьшую скорость. Наверняка это снова связано с малой глубиной очереди, но как именно? Видимо, нагрузка оказывается недостаточно интенсивной, чтобы контроллер мог постоянно держать «занятыми» все 8 дисков. В итоге для каждого из HDD операции последовательной записи чередуются с записью случайной. Ну а при меньшем количестве дисков количество случайных обращений уменьшается. Опять же, увеличение глубины очереди всё бы исправило.

Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательная запись, RAID0, RAID10
Результаты тестирования LSI MegaRAID SAS 9260-8i, последовательная запись, RAID0, RAID10

Эта группа массивов снова повела себя гораздо более предсказуемо. С увеличением блока скорость плавно растет, и массивы быстро разделяются на 3 группы по количеству «чередующихся дисков» — 2, 3, 4-8. Использование более 4 дисков в RAID0 снова никакого дополнительного преимущества не дает. В отличие от операций чтения, никаких флуктуаций для RAID10 не наблюдается — при записи массивы RAID0 внутри RAID10 должны работать синхронно.

При работе с малыми блоками вторая группа массивов оказалась гораздо быстрее, но на более актуальных для последовательных операций размерах такой разницы уже не наблюдается. Кстати, во второй группе результатов массивы с большим количеством чередующихся дисков показывают на малых блоках более низкие результаты. Причина та же самая, что и в прошлом случае — большая часть операций не является на самом деле последовательной.

Результаты тестирования LSI MegaRAID SAS 9260-8i, случайное чтение, RAID0, RAID10
Результаты тестирования LSI MegaRAID SAS 9260-8i, случайное чтение, RAID0, RAID10

Скорость случайного чтения в пике будет практически равна скорости последовательного чтения, но нам для этого снова нужно перейти к гораздо более высоким нагрузкам. Зато здесь производительность не перестает масштабироваться на 4 дисках, каждый новый накопитель немного улучшает результаты. Очень впечатлили показатели RAID10 массивов — они практически аналогичны RAID0 из того же количества дисков. Получается, что на операциях случайного чтения контроллеру удается идеально синхронизовать работу зеркальных RAID0. Обращает на себя внимание странный результат RAID0 на 8 дисков: скорость резко падает при переходе к 1 МБ блокам. Впрочем, это, как мы уже говорили, практически не встречающийся в реальности случай.

Результаты тестирования LSI MegaRAID SAS 9260-8i, случайное чтение, RAID5, RAID6
Результаты тестирования LSI MegaRAID SAS 9260-8i, случайное чтение, RAID5, RAID6

Теперь на 1МБ блоках заваливается результат RAID5 из 8 дисков — аналогично вел себя восьмидисковый RAID0 в прошлом тесте, так что, скорее всего, это не случайно. К тому же, если приглядеться, то результаты RAID0 из 6 дисков, равно как и результаты RAID5 из 7 дисков, оказываются на больших блоках немного ниже ожидаемого. Самым быстрым среди «сложных» массивов оказался RAID6 из 6 HDD, а RAID5 из 8 дисков показал себя едва ли не хуже всех. Здесь важно понимать, что в массивах с распределенной четностью для считывания одного полного фрагмента нужно прочитать одни и те же сектора на всех дисках, кроме одного (по возможности того, где находится контрольная сумма). При этом синхронизовать работу дисков, чтобы они постоянно были «в деле», не представляется возможным, ведь четность-то распределенная. Можно считать и контрольную сумму, но тогда результат придется высчитывать в памяти контроллера. И чем больше количество «уникальных» дисков в массиве, тем эта задача сложнее. При повышении глубины очереди алгоритм NCQ оптимизировал бы движения головок диска, зная о его будущих задачах. Однако в нашем тесте такой возможности нет.

В таком случае для контроллера было бы оптимальным всё же синхронизовать движение головок на всех дисках — тогда на RAID5 из 8 дисков мы бы могли добиться очень неплохой эффективности. Однако, судя по результатам, этого не произошло — нестандартная нагрузка сбила контроллер с толку.

Результаты тестирования LSI MegaRAID SAS 9260-8i, случайная запись, RAID0, RAID10
Результаты тестирования LSI MegaRAID SAS 9260-8i, случайная запись, RAID0, RAID10

Случайная запись. Здесь всё гладко, никаких подводных камней. Все массивы расположились согласно количеству «чередующихся» дисков. После 128 КБ наблюдается резкий спад скорости, так как именно этот объем был выбран нами при создании массивов.

Результаты тестирования LSI MegaRAID SAS 9260-8i, случайная запись, RAID5, RAID6
Результаты тестирования LSI MegaRAID SAS 9260-8i, случайная запись, RAID5, RAID6

Случайная запись слабое место RAID5 и RAID6, так как при этом выполняется много «лишних» операций записи, связанных с контрольной суммой. Крупные массивы, вне зависимости от типа, оказываются медленнее всего, ведь там приходится проводить более сложные расчеты. Если ваша задача подразумевает большое количество операций случайной записи, то лучше подумать о RAID10.

Результаты тестирования LSI MegaRAID SAS 9260-8i, база данных
Результаты тестирования LSI MegaRAID SAS 9260-8i, база данных

Результаты тестирования LSI MegaRAID SAS 9260-8i, файловый сервер
Результаты тестирования LSI MegaRAID SAS 9260-8i, файловый сервер

Результаты тестирования LSI MegaRAID SAS 9260-8i, рабочая станция
Результаты тестирования LSI MegaRAID SAS 9260-8i, рабочая станция

Результаты тестирования LSI MegaRAID SAS 9260-8i, веб-сервер
Результаты тестирования LSI MegaRAID SAS 9260-8i, веб-сервер

Ну и, наконец, тестирование в типичных сценариях. Здесь явными лидерами выступают массивы RAID0, и идущие следом RAID10. Первые платят низкой надежностью, вторые — объемом, но и те и другие имеют возможность не платить за надежность скоростью. Хотя на нагрузке Webserver, состоящей из запросов на чтение, их выигрыш не так уж и велик. А вот во всех остальных случаях, когда с записью приходится считаться, стоит обратить внимание на RAID10. Еще раз повторим, что в реальной ситуации расстановка сил будет иной; при высокой глубине очереди разница между результатами массивов будет уменьшаться, разве что случайная запись в любом случае дается массивам RAID5 и RAID6 с большим трудом.

Выводы

LSI MegaRAID SAS 9260-8i — мощный SAS 2.0 контроллер, оснащенный всеми функциями, присущими устройствам такого класса. Особенно нас впечатлила его работа с массивами RAID10 на операциях чтения — контроллер «выжимает максимум» из используемых дисков.

Больше того, с помощью программных пакетов FastPath и CacheCade можно расширить его возможности по использованию твердотельных дисков. Нам кажется, что в ближайшее время именно алгоритмы взаимодействия RAID-контроллеров с SSD и гибридными массивами будут представлять наибольший интерес.

Источник: LSI MegaRAID SAS 9260-8i тестируем RAID-контроллер с поддержкой SAS 2.0


RSS лента ВСЕГО блога с комментариями RSS лента ВСЕГО блога БЕЗ комментариев RSS лента этой КАТЕГОРИИ с комментариями RSS лента этой КАТЕГОРИИ и БЕЗ комментариев RSS лента ЭТОГО ПОСТА с комментариями к нему

Прыг: 01 02 03

Анонсы статей по темам:

Оглавление категорий:

Сервисы:

октябрь, 2017
пн вт ср чт пт сб вс
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31          


Похожие ресурсы:

Copyright © 2009 Версия компьютеры
Сейчас 22 октября 2017, 04:07
Система авторегистрации в каталогах, 
           статьи про раскрутку сайтов, web дизайн, flash, photoshop, хостинг, рассылки; форум, баннерная сеть, каталог сайтов, услуги 
           продвижения и рекламы сайтов

Рейтинг популярности - на эти заметки чаще всего ссылаются: